3-d Fea of Hard Turning: Investigation of Pcbn Cutting Tool Micro- Geometry Effects
نویسندگان
چکیده
In this study, 3-D finite element modeling of precision hard turning has been used to investigate the effects of cutting edge microgeometry on tool forces, temperatures and stresses in machining of AISI H13 steel using polycrystalline cubic boron nitrite (PCBN) inserts with two distinct edge preparations. Hard turning experiments were conducted to investigate the effects of cutting edge geometry, feed rate and cutting speed on tool flank wear and resultant forces. During hard turning experiments, lowgrade PCBN inserts with honed and chamfered edge preparations and through-hardened AISI H13 steel bars were used. Three components of tool forces and flank wear of the inserts were measured. PCBN inserts with honed microgeometry cutting edge resulted in lower tool flank wear in all cutting conditions. The feasibility of using finite element analysis to investigate the cutting tool micro-geometry effects in 3D hard turning is also explored.
منابع مشابه
Hard turning with variable micro-geometry PcBN tools
This paper presents investigations on hard turning with variable edge design PcBN inserts. Turning of hardened AISI 4340 steel with uniform and variable edge design PcBN inserts is conducted, forces and tool wear are measured. 3D finite element modelling is utilized to predict chip formation, forces, temperatures and tool wear on uniform and variable edge micro-geometry tools. Predicted forces ...
متن کاملInvestigation of Surface Roughness and Flank Wear by CBN and PCBN Tools on Hard Cr - Mo Steel
Hard turning is the latest technology and is used to turn hard materials by using cutting tools like CBN and PCBN. Certain hard materials like titanium, Inconel and stainless steel are pronounced as difficult to cut materials. The superior cutting tools effectively machine such hard materials and produces desirable surface roughness with less tool wear. The present research was carried on hard ...
متن کاملNumerical modelling of 3-D hard turning using Arbitrary Eulerian Lagrangian finite element method
In this paper, 3-D Finite Element Method (FEM) based numerical modelling of precision hard turning has been studied to investigate the effects of chamfered edge geometry on tool forces, temperatures and stresses in machining of AISI 52100 steel using low-grade polycrystalline cubic boron nitrite (PCBN) inserts. An Arbitrary Lagrangian Eulerian (ALE) based numerical modelling is employed for 3-D...
متن کاملNumerical modelling of 3D hard turning using arbitrary Lagrangian Eulerian finite element method
In this paper, 3D Finite Element Method (FEM)-based numerical modelling of precision hard turning has been studied to investigate the effects of chamfered edge geometry on tool forces, temperatures and stresses in machining of AISI 52100 steel using low-grade Polycrystalline Cubic Boron Nitrite (PCBN) inserts. An Arbitrary Lagrangian Eulerian (ALE)-based numerical modelling is employed for 3D p...
متن کاملPredictions of Tool Wear in Hard Turning of AISI4140 Steel through Artificial Neural Network, Fuzzy Logic and Regression Models
The tool wear is an unavoidable phenomenon when using coated carbide tools during hard turning of hardened steels. This work focuses on the prediction of tool wear using regression analysis and artificial neural network (ANN).The work piece taken into consideration is AISI4140 steel hardened to 47 HRC. The models are developed from the results of experiments, which are carried out based on De...
متن کامل